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ABSTRACT

During the fall and winter 1979-1980 tests were conducted in a section
of the Middle Snake River within Hells Canyon to determine the effects of

hydroelectric power peaking on fall chinook salmon (Onchorhychus tshawytscha)

embryo incubation and fry quality. Additional simulated peaking tests were
conducted at the Hayden Creek research station using artificial stream chan-

nels. Steelhead trout (Salmo gairdneri) and chinook salmon egg dewatering

tolerance tests were conducted at the Hayden Creek stating using 16 inde-
pendent flow controllable chambers. In Hells Canyon, no definitive rela-
tionship was found between embryo survival and the incidence of flow fluc-
tuations and periodic redd exposure. However, the highest embryo survivals
occurred in areas dewatered the least. There was extensive sediment intru-
sion into the artificial fall chinook redds within Hells Canyon. In labora-
tory tests, no significant difference (P > 0.05) in survival were found be-
tween embryos periodically dewatered (11-12 hr/day) and those continually
watered, although alevins from the channel which was dewatered were signifi-
cantly Tonger (P < 0.0037) and heavier (P > 0.0391) than alevins from the
control. This resulted from elevated temperatures in the dewatered riffles.
Steelhead trout and chinook salmon embryos were tolerant to 1-5 weeks of
continuous dewatering with no significant effects on survival to hatching
(provided embryos remained moist), alevin quality, growth rates, or latent
fry quality. Alevin dewatering tolerance 1imits are estimated to be Tess
than 10 hours. Gravel moisture within dewatered artificial redd remained
relatively constant throughout 1-5 week dewatering periods. Gravel moisture
levels of approximately 4% or greater appear to be sufficient to allow

salmonid embryos to withstand periods of dewatering, provided temperatures



remain within embryo incubation tolerances. The most pronounced effect of
long term embryo dewatering in the laboratory tests was accelerated
development with hatching modes as many as 14 days earlier than embryos
incubated in water. Dewatered embryo development may be delayed during
periods of cold temperatures. Regardless of incubation condition tested, or
duration, fry reared 57-60 days exhibited no significant differences in

length or weight.



INTRODUCTION

To efficiently utilize water for power production, most hydroelectric
projects operate on a demand basis. This generally results in some level of
sustained power production throughout the day (base load) with a sharp
increase during one or more shorter periods of time (peak load). The
highest demands for power generally occur during weekdays during daylight
hours while the lTowest demands are associated with the nighttime and during
weekends. To provide peak Toading, Targe amounts of water must be released
in a relatively short period of time. These rapid water fluctuations could
adversely affect salmonid spawning and egg incubation success.

Of particular concern are the impacts of power peaking on Snake River
fall chinook salmon (Onchorhynchus tshawytscha) whose numbers have decreased
from 30,049 in 1962 to 1756 in 1977 at Ice Harbor Dam. Hydroelectric devel-
opment has reduced the useable fall chinook spawning area in the Snake River
from 630 miles (1013 km) to an 88 mile (141 km) section within Hells Canyon
(Anon 1978). Flow in this reach is regulated by Hells Canyon Dam. During
the fall and winter, daily fluctuations in flows from 10,000 to 29,000 cubic
feet per second (cfs) (282 to 821 m®*/s) and higher are common. Such fluctua-
tions can result in stage differences of 5 ft (1.5 m) or more. Fall chinook
salmon may spawn in areas which are subsequently dewatered during non-
peaking periods. Alternating watered and dewatered conditions may continue
through- out the entire incubation period.

The seriousness of this problem has already been shown on the Columbia
River below Priest Rapids Dam where in 1976 an estimated 833,897 swim-up
fry were killed when flows were reduced below fall chinook redds (Bauers-

field 1978). Studies are continuing on this section of river to ascertain

Xi



the overall effects of flow fluctuation on fall chinook enbryo incubation
and fry survival (Tom \elch personal comunication, University of Idaho
1980) .

The potential effects of flow fluctuations on enbryo survival and re-
sulting fry quality include desiccation of enbryos, increased susceptibility
of embryos to freezing conditions, sedinention of redds, and | owered intra-
gravel dissolved oxygen |evels.

Qur study was designed to determine if flow fluctuations adversely
af fect chinook sal mon enbryo devel opnent and fry quality. In our evaluation
we tested the ability of salnonid enbryos to survive varying periods of de-
watering followed by flow restoration. W also experimentally exam ned
the tolerance linits of salnonid enbryos to varying periods of conplete de-

watering and nonitored resulting fry for quality differences.



DESCRI PTION OF STUDY AREA AND TEST FACILITIES

Field Study

W conducted our field tests in a section of the mddle Snake River
which flows through Hells Canyon, the deepest gorge in North Anerica. This
reach of the river extends from Hells Canyon Dam (river mle 243 (river kilo-
meter 399)) to the towns of Lewiston and C arkston RM 140; (RK 225), a dis-
tance of 108 miles (174 knj.

The flow of the river is regulated by Hells Canyon Damwith daily flows
averagi ng 22,460 cfs (636.1 m/s) since 1965. The maxinum and i ni mum dis-
charge recorded was 75,800 cfs (2150 m3/s in April of 1971, and 4950 cfs
(140 rré/s) in My of 1968 respectively. The maximum flow recorded during
our study (14 Novenber 1979 and 25 February 1980) was 30,450 cfs (862.3 md/s)
on 29 January 1980 while the minimmwas 9200 cfs (260.5 m3/s on 22 Decenber.
Daily flow fluctuations as a result of peaking operations occurred through-
out our study period, often resulting in stage changes of up to 1.5 m (5.0 ft)
(Figure 1).

VW selected four study sites within a 43.4 km (27 mle) section of the
river extending fromRM 196 (RK 315) to RV 223 (RK 358) (Figure 2). Study
areas were selected on the basis of suitability of water depths, velocities
and substrates for fall chinook sal mon spawning, historical spawning docu-
mentation., susceptibility of the areas to flow fluctuations, and access-
ibility and proxinmty to other sites. Areas selected offered a range of
depths and velocities with an expected dewatering frequency fromoften to

never.
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HELLS CANYON
DAM

KEY MAP

FIGURE 2. Location of the Four Snake River Study Sites Used To
Evaluate Effects of Fluctuating Flows on Incubation Success
of Fall Chinook Salnon, Novenber 1979 - February 1980.
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Site 1 was |ocated within RM 223 (RK 358) approximately 0.48 km
(0.3 mile) upriver from Suicide Point. The area consisted of a small
gravel bar (45.7m (150 feet) long x 30 m (100 ft) wide) arising about
12.2 m (40 ft) out fromthe left side (Oregon) of the river. Honmny
Creek enters the Snake River a short distance downriver fromthis site
(Figure 2).

Site 2 was |ocated within RM 223 (RK 358) approximtely 0.16 km (0.1
mle) upstream from Suicide Point and 0.32 km (0.2 mile) downriver from
Site 1 (Figure 2). The study area was |ocated on the Oregon side of the
river where a large gravel bar bordered its perineter.

Site 3 was located within RM206 (RK 331) 1.4 km (0.85 mle) upriver
from Copper Creek (Figure 2). The study area was on the I|daho side of
the river directly below H gh Range rapids, and consisted of a large
gravel deposit extending well out into the river.

Site 4 was |ocated within RM 196 (RK 315) on the Idaho side of the

river and enconpassed a large gravel covered area across from Dug Bar.

Laboratory Study

VW conducted simulated peaking tests in four experinental channels
| ocated at the Idaho Departnment of Fish and Game's Hayden Creek Research
Station near Lenmhi, ldaho (Figure 3). Each channel neasured 20.6 m | ong
X 1.2 mwide x 0.6 mdeep (68 x 4 x 2 ft) and contained two riffle and
three pool areas (Figure 4). Riffle substrate was conprised primarily
of material ranging from12.7 to 76.2 nm (0.5 to 3.0 inch) in dianeter.
Sediment levels increased fromriffles |-4 with material <4.6nm (0.18 inch)
in diameter averaging 0.93% in riffle 1; 15.5%in riffle 2, 22.7%in riffle

3: and 32.9%in riffle 4.



, "08-6/61 Ll®4 “P93Onpuo) auaM s3sa] bBuiyead paje|nuis auaym
‘oyepl ‘LywdT JdedU UOLIRLS YOUB3SIY 3Y934) uapAeH Yyl 40 uoLIeD0T Y3 Buimoys dey

*€ 3YN9I4

-

-

e .
\

T

VIV Adnils-—--t¢

Hiihs
i G J://_ y ____ .-._._.ﬂv-.m_.
-
PR i, NOILVLS
x HOHV3S3Y
d¥W _ A3N NRVLINOW \ %, MIIHO NIAAVH
;__f
\
OHYdI }
\
Y /
N N




Hayden Creok Water
‘vspﬂl’lg Water
I

U It’ Screen—a{/////, (/AN
Headbax - Thermograph o Q @)
‘ HHHH orDrum  Screen o OO
H-Flume 1 1
Bouider —/(/</\O’O" i o
A 0
N O
0 OT OOO O
%, 0 OL 4
o O % Qé’g b RIFFLE
* *+ 25 oo 3
0o 00 2%@037 ?g
O Oo o'%: :#3% &y
(35
§§9 oct =%§é§§ mrlns
5'@830 %fo o Oo
b
() P =
os”.?a‘ési- o) ®ol |© o
© 0 o POOL c:) O
0 Q
O 4 4 Ooz: = OO
20.6m 0 0--— —O 20.6m
g0 © e RIFFLE

4

RIFFLE
2

4
WINDOW L :LT

e
s e
oF
o
@)
O X
O 0"“7%{‘% s
90359 ,'bq; 2
GO0 )
- Sitl
goo (@,; %ﬁg
%‘%’JQ Jl gv:.xb’
G Fish  Trop ————————
—1,2m-
UPPER CHANNELS LOWER CHANNELS
RIGHT LEFT RIGHT LEFT

FIGURE 4. Schematic Diagram of The Four Artificial Stream Channels Located
At The Hayden Creek Research Station Near Lemhi, Idaho, Where
Simulated Peaking Tests Were Conducted, Fall 1979-80.

8




Water was supplied to the channels directly from Hayden Creek or from
a constant tenperature spring (12 C). \Water flow to the channels was con-
trolled by two headgates and flow in each channel could be regul ated. Two
0.46 m (1.5 ft) Hflumes located at the head of each channel neasured dis-
char ge

Enbryo dewatering tolerance limt tests were conducted in two 1.2 m
wide x 2.4 m(4.0 x 8.0 ft) long channels each with eight 1.2 mlong x 0.3 m
wide x 0.3 m(4.0x 1.0 x 1.0 ft) deep independent flow controllable cham
bers. The channels were installed outside and were plunbed with Hayden
Creek water. Each chanber was filled with gravel consisting predoninantly
of material 6.4 to 76.2 nm (0.25 to 3.0 inch) in dianeter. Fine sedinent
(< 6.4 m was added in known percentages and particle sizes

Fry rearing tests were conducted in four 4.6 mlong x 0.3 mwde (16.0
x 1.0 ft) troughs each subdivided into eight 0.6 mlong (2.0 ft) conpartnents

separated by screen barriers.






METHODS
FLOVN FLUCTUATI ON TESTS

Field Study

To nonitor flow fluctuations at each Snake River study site, we in-
stalled a 2.4 m(8 ft) x 0.24 m (0.8 ft) diameter stilling well, housing a
Steven's F-| electric drive 16 day water |evel recorder, and a staff gage
(Figure 5, 6, 7, 8 and 9). Air, water and intragravel tenperatures were
monitored at select |ocations using a Peabody-Ryan 90-day subnersible therm
ograph and/or a Partlow 30 day 2 pen thernograph

Fertilized green fall chinook eggs from Bonneville Hatchery, O egon,
were transported to Pittsburg Landing on 14 Novenber 1979. Enbryos were
counted into gravel filled Witlock-Vibert boxes (WV boxes) with 100
enbryos/box and stored overnight in water filled coolers. A 3 nm water
filled vial was placed in each WV box as an indicator of intragravel
freezing. Al enbryos were planted on 15 Novenber by 1400 hours (27 hours
after fertilization). Ten artificial redd sites were selected at each study
area wWith sites including areas which woul d be dewatered frequently,
occasionally and never (controls). Egg boxes were buried at a depth of 25.4
to 30.4 cm (10 to 12 inches). A Mark VI standpi pe (Terhune 1958) was
installed imediately anterior to and at the same level as the enbryos to
al | ow neasurenents of intragravel dissolved oxygen and tenperature. A 20.3
cm (8 inch) diarneter substrate core sanple (MNeil and Ahnell, 1964) was
taken directly downstream from each artificial redd. Sanples were vol une-
trically analyzex using a series of nine sieves ranging in size from76.2 to

0.42 mm (3.0 to 0.016 inch).



FIGURE 5. 3tilling Well and Water Level Recorder Located At Site 4
{Dug Bar) Utilized to Monitor Flow Fluctuations [During
Fall Chinook Embryo Incubation Tests, Snake River,
Winter 1979-30.
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Water depth, velocity (0.6 depth), and dissolved oxygen were neasured
at each redd at several discharges. Velocities were neasured with a Mrsh-
MBirney electronic current meter while dissolved oxygens were neasured
with a Yellow Springs Instrument (YSI) 54-ARC oxygen neter. \ater depths
were related to staff gage and water level recordings. This relationship
enabl ed us to conpute the amount of time enbryos were dewatered. W
assunmed this would occur when the water |evel was reduced 15.2 c¢cm (6 inch)
bel ow t he substrate surface of each redd. At one site (Site 2) we napped
the water edge at 0.30 m (1.0 ft) gage height intervals to determ ne when
surface flow ceased over the redds.

Curmul ative dewatering tinme for each redd was cal cul ated by relating
the staff gage height readings at each site to the hourly gage height
readings at Hells Canyon Dam (station # 13290450) (Figure 10). Once the
gage height reading at the dam corresponding to the site reading at which
the enbryos become dewatered was deternined, the total hours of dewatering
for each redd was conputed by sunmming the hours the gage hei ght reading
was bel ow this value. The |ongest continuous period of dewatering was
simlarly determ ned.

Water surface slope was neasured at each site using an Abney |evel and
phillyrod. Study areas were mapped using a transit and philly rod noting
the locations of the artifical redds, thernographs and stilling wells.

On 6 February 1930, we recovered one WV box fromredd nunber 3 at
Site 4. Enbryos appeared to be in good condition and were just beginning
to hatch. W scheduled conplete survival assessment for the follow ng
week, 15 February, but due to mechanical problens enbryos were not recovered

until 18 March. Because of this delay, enbryos and fry were in many instances,

15
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badly deconposed. Imersion in formalin hardened the remants, and we
careful ly analyzed the boxes by counting the nunber of enbryos and yol k

sacs as well as live alevins present in each box.

Laboratory Tests

Ve conducted peaking tests in the Hayden Creek channel using fertil-
ized green eggs of spring and fall chinook salnon. Spring chinook enbryos
were obtained 5 Septenber 1979 from the Washington Department of Fisheries
Cowl itz Hatchery |ocated near Tol edo, Washington; fall chinook enbryos
were procured 6 Decenber 1979 from the Oregon Department of Fish and WId-
life Bonneville Hatchery. Enbryo planting procedures and flow regul ations
apply to both tests with exceptions noted.

In each of the four riffles we constructed three artifical redds and
planted gravel filled WV boxes with 100 enbryos/box (Figure 11). A 3 m
waterfilled vial was placed in each box as an indicator of intragravel
freezing. Al boxes were buried approxinmately 20.3 cm (8.0 inch) deep. A
Mark VI standpipe was centrally positioned within each redd at the |evel of
the enbryos to enabl e neasurements of intragravel dissolved oxygen and water
tenperature (Figure 11). \ater and intragravel tenperatures were nonitored
continuously using recording thernographs

Water flows for the spring chinook test were regulated to provide 4.5
to 9 cm (1.7 to 3.5 inch) of water over all riffle areas during peaking
hours (1021 & min (0.6 cfs)). Because of a water shortage, peaking flows
during the fall chinook tests were less (171.8 &/min (0.10 cfs)). Water
depths and vel ocities were neasured over each redd using a top setting rod
and a Marsh-MBirney electronic current neter. Mean water velocities in
each channel were determined using time of travel techniques enploying

fluorescent dye.

17
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V& operated the peaking channel (test) on a 12 hour on/off schedul e
with enbryos watered from 0800 to 2000 hr and dewatered from 2000 to 0800
hr (Figure 12). Flow in the nonpeaking channel (control) remained relatively
constant throughout the incubation period.

During the spring chinook tests enbryos were dewatered throughout the
weekend resulting in a total period of constant dewatering of 60 hrs. W
initiated the peaking regime on 7 Septenber for spring chinook and 9 January
for fall chinook. Because of potential intragravel freezing during the fal
chinook tests, we covered the riffle areas during periods of dewatering
with 5.1 cm (2.0 inch) thick plastic lined insulation

Wien enbryos placed in Heath stack incubators began to hatch we discon-
tinued tests and maintained flows in both channels until hatching was com
plete. W assessed survival in the redds by recovering all WV boxes
and counting the number of dead enbryos. A representative sanple of the
alevins fromeach WV box was preserved in 10%formalin for analysis of fry
quality (total length 0.5 nm and weight 0.1 ng).

Random sanpl es of 300 al evins fromeach channel were transferred to
separate 30 m (10 ft) long troughs and reared for 2 months to allow com
parisons of growh, final length and weight.

Fol l owi ng survival assessment we collected a substrate sanple from
each redd using a 20.3 cm (8.0 inch) dianmeter core sanmpler (MNeil and

Ahnel | 1964). Sanples were volunetrically anal yzed as previously discribed

19



FIGURE 12. Hayden Creek Experimental Channels Used to Determ ne The
Effects of Flow Fluctuation on Chinook Sal mon Enbryo Incubation.

Test Channel (left) was Dewatered on a 12 hr. On/ O f Schedul e.
Control Channel (right) Flow was Constant During Test. Mark
VI Standpi pes Indicate Egg Location, Fall 1979.
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EMBRYO DEWATERING TOLERANCE TESTS

Dewatering tolerance tests were conducted using fertilized green

steelhead trout (Salmo gairdneri) and spring chinook salmon eggs. Steel-

head and chinook embryos were obtained from Dworshak National Fish Hatch-
ery and Cowlitz Hatcher, respectively

Based on prior studies (Reiser and White (1981 1in press) we utilized
four sediment-substrate mixes for the steelhead tests and reduced this to
two mixes for the chinook tests The sediment mixes were added to sub-
strate comprised of materia 12.7 to 76.2 mm (0.5 to 3.0 inch) in diameter

The mixes we tested were

430% 4.6 0.84 mm :
and
20% 0.84 mm

Steelhead <§£}—————- 20 4.6 0.84 mm } —— Chinook
and ,//;7

\ 102 0.84 mm -
\ 205 46 osiml

N 10% 0.84 mm

In both tests, four gravel filled W-V boxes, each containing 100 fer-
tilized eggs in the upper compartment were equidistantly spaced within each
chamber and covered with approximately 15.2 cm (6.0 inch) of the sediment
mix (Figure 13). A water filled vial was placed in each W-V box during
the chinook tests as an indicator of intragravel freezing. Pacific Trans-
ducer remote bulb thermometers were placed at the level of the embryos in
four dewatered chambers. Temperatures were recorded three times daily
(0800, 1200, 1600 hrs) Intragravel temperatures were continually recorded
during the steelhead tests using a Parlow thermograph Air and water tem-

peratures were monitored using Taylor and Weathermeasure thermographs.
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VW used only one set of experinental channels for the steelhead tests.
VW used two sets of channels in chinook tests and replicated the sane sedi-
ment nmixture twice in each channel. A roof protected one set of chanbers
fromrain and snow

When experinments were initiated flows were adjusted in all chanbers to
provi de approximtely 2.5 c¢cm (1.0 inch) of water passing over the substrate
After 3 days, the flow in one of two adjacent chanbers containing simlar
sedi ment m xes was reduced below the level of the enbryos. A small inflow
was maintained in these chanbers to sinulate groundwater. Enbryo surviva
was assessed at weekly intervals in both the watered and dewatered chanbers.
Survival analysis included recovering one WYV box/chanber/sanpling period,
counting the nunber of dead enbryos and placing the viable enmbryos in
separate Heath stack trays to monitor ultimate hatching success.

During each sanpling period a sanple of the gravel-sedinment mx sur-
roundi ng the eggs was coll ected fromthe dewatered chanbers, placed in soi
tins and analyzed for noisture content. This entailed weighing each sanple,
drying the sanples in a forced air oven at 110 C for 24 hours and rewei ghing.
The difference in weight was due to the noisture content of the nmix, which
was expressed on a percentage basis

When all eggs had hatched, equal sanples of fry were transferred to
conpartnental ized rearing troughs. A programred feeding schedul e was used
throughout the rearing tests. The amount of feed/ week/conpartment was cal-
culated by

grans of feed = 0.035 x ave. body wt/fish x no. of fish x 7 days

Where: 0.035 is the percent of body weight to feed/day (Deuel et al
1952).
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VW reared steelhead using both Hayden Creek and spring water, but
used only spring water for the chinook tests. Al fry were inventoried and
wei ghed on a weekly basis throughout the rearing period, which extended
from 19 August to 18 Cctober 1979 for steel head and 15 January to 12 March
1980 for chinook. After the final inventory, sanples of fry were preserved

in 10%formalin to allow further conparison of |length and weight.
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RESULTS
FLOW FLUCTUATION TESTS

Field Study

Evidence of natural spawning was observed at three of our four embryo
planting sites. An adult fall chinook was observed over one of the con-
trol redds at site 1 while natural redds were observed near sites 2 and 4
(Figure 7 and 9).

Hatching survivals ranged from 18 to 74.5% (X = 42.4%) site 1; 9 to
35% (X = 24.1%) site 2; 11 to 57% (X = 27.5%) site 3; and 3 to 43.5% (X =
24.5%) site 4 (Table 1). Alevin lengths ranged from 24 to 33 mm. Mean
embryo survival at each site was inversely related to the cumulative
period of dewatering (r2 = 0.956). Similar analysis utilizing individual
redd survivals and periods of dewatering resulted in a much reduced yet
significant relationship (r2 = .1277, P < 0.005). Percentage of the in-
cubation period each redd was dewatered ranged from O to 14% site 1; 0 to
53% site 2; 0 to 31% site 3; and 0 to 48% site 4 (Figure 14). Correlational
analysis between the maximum duration of redd dewatering and egg survival
also indicated a significant relationship although once again r2 values

2 = 06263 P < 0.05).

were very low (r
Analysis of the redd substrate samples indicated a high percentage

of fine material < 4.6 mm present in the gravel. Average percentages found

in the four sites were 37.8% site 3; 37.4% site 1, 27.5% site 4; and 21.9%

site 2. Material < 0.84 mm averaged 10.5% site 3; 8.5% site 4; 8.2% site 2;

and 7.6% site 1 (Table 2). Intragravel intrusion of sediment was evidenced

by the Targe amounts of sediment < 0.84 mm found within the W-V boxes at
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the tinme of recovery. There was, however, no correlation between egg sur-
vival and percentage material < 0.84 mm from the individual redds (r2 =
.00043) .

The maxi num change in stage at each site was 1.71 m (5.61 ft) for site
1, 2.07 m(6.79 ft) for site 2; 1.95 m(6.40 ft)-site 3; and 1.74 m(5.71 ft)
for site 4. Flowincrease rates were generally less than 0.30 nfhr (98 ft/hr)
al though on at |east two occasions rates were slightly greater than 0.46 mhr
(1.51ft/hr). On several occasions the stilling well and water |evel recorder
at site 3 were covered during high periods of flow. Average tine of travel
wat er velocities between sites |-2 and 3 was 2.04 nmiset (6.69 fps) and be-
tween sites 3 and 4, 1.76 nmisec (5.77 fps).

Water depths and velocities over artificial redds varied directly wth
changes in flow while dissolved oxygen levels were in nost cases flow inde-
pendent (Table 3). Several redds having no surface flow exhibited intra-
gravel oxygen levels greater than 9.0 ng/l. \Water surface slopes over the
artificial redds were 0.94% site 3, 0.47% site 1, 0.44% site 4, and
0.25% site 2.

Mean water tenperatures were generally |-2 C colder at site 4 than
at site 2. Tenperatures at site 4 ranged from1l.1 Cto 11.1 C, while tem
peratures at site 2 ranged from2.2 Cto 11.5 C Maxinum air tenperatures
for site 2 ranged from-7.9 Cto 14.3 C, with mnimm tenperatures from
-14 Cto 7.2 C. Maximumand mni numval ues at site 4 ranged from-6.8 Cto
5.5 C (Figure 16). Tenperatures recorded intragravelly include times when
the redds were dewatered as well as watered. At least 13 times during the
incubation period, intragravel tenperatures at site 2 were at or below 0 C
(Figure 15). From 26 January to 3 February naxi mum and m ni num tenperatures

remained only slightly above 0 C. These periods of |ow tenperatures occurred
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TABLE 3. Depth (D)-ft, Mean Velocity (V) (0.6 depth) Fps And Dissolved Ox
Redds At Each Of The 4 Study Sites During Various Levels Of Stag

Depth (D)-ft, Velocity (V)-fps and Dissolved Oxygen (D,0) mg/%

Redd Numb
1 2 3 4 5
Site No. Gage Height D v D.0 D v D.0 D A D.0O D v D.0 D v
1 2.90 0.9 1.95 8.2 0.65 2.3 7.9 0.95 1.2 8.2 0.45 1.05 7.8 1.20 1.40
3.30 1.3 2.4 8.4 1.1 22 8.3 1.3 2.2 8.4 0.9 1.8 7.7 1.55 1.75
3.80 1.85 2.2 9.8 1.5 2.5 9.2 1.6 2.1 8.8 1.3 2.6 8.2 1.9 2.35
Extragravel D.0. = 8.20
2 3.50 1.25 0.5 9.8 0.7 1.15 9.6 3/ 3/ 9.4 1.8 2.15 8.8 2.6 2.2
4.00 2.0 1.0 10.0 1.5 1.0 9.4 0.4 0.95 9.4 2.5 2.6 2/ 2/
4.50 2.5 0.8 2/ 1.9 1.8 9.9 0.8 1.25 9.6 2.8 2.25 2/ 2/
5.00 3.0 1.5 2/ 2.4 1.65 2/ 1.3 1.7 10.8 2/ 2/
5.50 3.5 1.65 2/ 2.9 2.65 2/ 2.0 2.15 2/ 2/ 2/
5.75 3.5 1.65 2/ 3.05 2.1 2/ 2.0 2.4 2/ 2/ 2/
Extragravel D.0. = 8.70
3 2.65 0.2 O 9.1 3/ 3/ 3/ 3/ 8.9 1.1 1.0
3.70 1.4 0.55 9.8 3/ 3/ 9.7 3/ 0.7 1.15 9.5 2.2 1.35
4.20 1.6 0.95 2/ 0.1 0 8.8 3/ 3/ 9.5 1.0 1.15 9.0 2.9 1.35
4.70 2.15 0.8 2/ 0.45 0.4 9.0 0.05 0 9.7 1.4 1.3 8.9 3.35 2.0
5.2 2.75 1.25 2/ 1.10 1.45 8.8 0.65 0.65 9.2 2.05 1.95 2/ 2/
Extragravel D.0, = 8.50 ,,
4 1.90 3/ 3/ 3/ 3/ 0.6 1.2
2.90 3/ 3/ 3/ 3/ 1.55 4/
3.80 3/ 3/ 9.9 3/ 3/ 9.8 0.95 1.7 9.2 1.0 2.4 9.2 2.5 3.5
4.30 0.5 € 9.0 .01 C 9.2 1.35 1.55 8.7 1.45 2.65 8.7 2/
4.80 0.65 0.5 9.8 0.45 1.2 9.6 1.8 2.5 2/ 1.85 2.9 2/ 2/

Extragravel D.0. = 10.80

1/ Standpipe dislodged
2/ Mater depth too deep to aliow measurement
3/ Redd exposed

4/ Not measured
* 1 foot = .3048 meter
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TABLE 4. Percent Spring Chinook Egg Survival From Artificial Redds Exposed
To Constant (Control) and Simulated Peaking Flows (Test) In The
Hayden Creek Channels. Fall 1979.
% Sec Percent Egg Survival _
Redd No Channel < 0.84 mm Box 1 Box 2 Box 3 Box 4 Mean X
1 Control C 0.44 47.0 66 15 27 39.7
Test T 0.59 90 61 89 Bhi.. Bl
2 & 1.23 30 37 47 its) 45.5
Ee Bt N LW 1 1.25 82 87 SRR | SRR
3
Mean X
4 C 2.79 68 68 79 79 73.5
T 1.65 87 83 90 89 87.2
5
6
Mean X
7 C 1.93 90 86 92 89 89.2
T 4.25 48 75 80 60 65.7
8 C 4.97 88 92 85 86 87.7
T 3.73 73 49 65 55 60.5
9 C 5.78 89 68 49 87 73.2
, T 4.10 57 16 44 25 35.5
Mean X C 4.23 89 82 75. 87.3 83.4
53.9
10 C 2.15 83 89 80 88 85
T 4.85 58 67 65 64 63.5
11 C
T . _ _ _
12
Mean X C F+13 80.7 g4 80. 86.3 82.9
= o= Bl 61 60.3 58 60.7 59.97
OVERALL Mean X C 73.8 74.9 71. 77.7 74.4
T 72 65.7 73 67.8 69.6
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when the redds were dewatered. Because of equipment failure, intragravel
temperatures at site 4 were not recorded after 27 December. The records
from site 2 indicate that the potential for intragravel freezing of embryos
within dewatered redds is possible. However, we found no broken water
filled vials in any of the redds to indicate that freezing had occurred

and influenced egg survival

Laboratory Tests

Spring chinook salmon embryo survival, evaluated on 30 November 1979,
averaged greater than 50% for both control and test channels (Table 4).
Test channel redds 1-6 were cumulatively dewatered 31.5 days, redds 7-12,
30 days. This differential occurred since there was an approximate 1 hour
delay before embryos were dewatered in the lower channel. Embryo survival
in test channel riffles 1 and 2 was higher than in the control, while the
reverse occurred in riffles 3 and 4. Overall, percent embryo survival
within the 4 riffle areas was dependent on flow regime (X2 = 16.04: df=3;
P < 0.05). However, variance testing between control and test riffles in-
dicated no significant difference in variances for all riffles except number
f115411; P < 0.05), in which the control variance was larger
I

Table 5).

1 (F= 6.95; d

Table 5. Results of Variance Testing Between Control and Task Channel
Embryo Survival For The Spring Chinook Flow Fluctuation Tests,
Hayden Creek Channels - Fall 1979.

Riffle ' 52 control s2 test s%/ sg
1 486.02 69.97 6.95
2 55.30 32.52 1.70
3 156.82 66.1 2.37
4 42.08 34.00 1.24
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TABLE 5 Substrate Composition of Artificial Spring Chinook Redds From the Control And
Test Channels At The Hayden Creek Research Station. Fall 1979.
Percent volume of material passing through sieve size (mm) indicated

Redd No.  Channel 76.2  56.8  #5.4 12.7 G.4 4.6 _3.36 1.70 0.84 Q.42
1 Control C 100 749,54 5,62 2.11 2.1l 1.01 0. a1 0.43 0.43 0.30
Test € 1on B3.78 3.09 1.71 0.70 .70 070 0.70 0.549 (.55

2 H g 02.86 3.45 1.77 1.47 1. 47 1.47 1.32 1.22 1.22
100 100 4,17 1.38 1.38 1.38 1.38 1.38 1.25 1.16

3 C 100 B&.23 24 5b 0.30 .19 0,18 0.19 D.19 0.19 .19
T 100 100 Z.81 1.16 0.98 0.85 0:85 (.85 0.76 .67

X I o0 86.23 3.88 1.39 .26 .84 (.76 0.65 0.61 -IZI.S.'-’
T 100 04,5 3.36 1.42 1.02 0,93 0.928 a.9a 0.67 0,81

i i 100 100 £2.50 33.63 2464 18.31 12.94 E..JI' i _E_. 79 0.B0
] 100 B7.29 25,10 72.92 15.34 11.33 7.32 2.73 1.64 0.7¢

5 [ 100 94.20  31.03 26.03 19.403 14.23 9.23 4.71 251 LB
T 100 90,23 37.21 2.48 23.83 16.428 10.13 5.31 2.24 1.06

] c 100 100 16.12 13.85 8.30 6.50 3.B6 1.64 1.01 .43
T 100 B4.16 45.34 g7y 33.17 26.41 20,81 10.0 4,58 1.70

X C 100 98.07 29.88 24.50 17.34 13.01 8.68 4.24 2.10 0.96
T 100 87.23 35.88 31.39 24.15 18.07 12.75 6.01 2.96 1.16

7 C 100 95.17 40.95 37.37 24.84 16.97 11.06 5.33 1.93 0.82
T 100 100 42.94 37.17 29.22 20.47 15.30 8.34 4.24 1.54

8 C 100 100 52.82 45.89 36.04 27.51 21.07 9.70 4.9 1.28
T 100 93.85 33.94 28.95 21.49 17.90 13.52 7.69 3.73 1.07

9 c 100 100 49.43 44,17 36.20 27.94 20.16 12.08 5.78 1.59
T 100 100 38.51 35.95 29.54 25.51 17.64 8.67 4.09 1.09

X C 100 98.39 47.73 42.48 32.36 24.14 17.43 9.04 4.22 1.23
T 100 97.95 38.46 34.02 26.75 21.29 15.49 8.23 4.02 1.23

10 C 100 94.89 28.16 22.79 16.88 12.85 8.73 4.70 2.15 0.99
T 100 100 48.61 43.53 34.54 26.72 20.47 10.70 4.84 1.83

11- C 100 100 58.60 53.09 42.47 36.71 26.27 17.45 9.89 3.23
T 100 96.35 48.50 41.01 33.71 27.14 20.57 12.35 6.32 1.75

12 C 100 100 58.16 52.97 45.74 39.61 30.33 20.11 9.35 2.30
T 100 96.90 49.41 40.60 30.17 24.58 18.06 13.71 3.90 1.29
X C 100 98.30 48.31 42.95 35.03 29.72 21.78 14.09 7.13 2.17
T 100 97.75 48.84 41.71 32.81 26.15 19.70 12.25 5.02 = 1.62
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Enbryo survival within control riffle 1 may have been influenced by
extraneous factors (e.g. handling mortality) not affecting the others
Wth the elimnation of these survival values, percent survival is inde-

2 - 7.61; df=3; p<0.05), i.e. enbryo survival

pendent of flow regine (X
was not significantly different between the control and test channels

Embryo survival in the control channel was largely unrelated to sedi-
ment | evel (r2 = .0067) even though levels <0.84 nmtended to be higher
than in the test channel (Figure 17, Table 6). In contrast, survival in
the test channel was nore related to sedinent |evel (r2 = 0.424). Based on
sediment, the greatest reduction in enbryo survival in the test channe
occurred with levels of 4-5% material < 0.84 mm and 20-21% < 4.6 mm No
reduction in survival was observed in the control channel with simlar
level s (Figure 18).

Water depths and velocities over control redds during the peaking
hours ranged from6.1 to 9.4 cmand 0 to 10.67 cmset (2.4 to 3.7 inch
and 0 to .35 Fps); during nonpeaking hours, from6.1 to 12.19 cmand 0 to
18.29 cmset (2.4 to 4.8 inch and 0 to .60fps)(Table 7). The 0 velocities
resulted fromthe redds being positioned directly posterior to each other
causing backwater areas. Average time of travel velocities ranged from
9.2 t0 10.9 cmset (.30 to .36fps ) (peaking), and 14.00 cm set (.46 fps)
(nonpeaking) (Table 8). Depths and velocities over test channel redds (peaking)
ranged from4.57 to 9.14 cm (1.8 to 3.6 inch) and O to 18.29 cmset (0 to .60
fps). Intragravel dissolved oxygens tended to be lower in the control chan-
nel ( range 1.0 to 6.6 ny/l; X = 4.18) than in the test (range 4.4 to 6.3

my/l; X = 5.5), especially in the upper redds where sediment |evels were

low (Table 7). However, large bl ankets of periphyton overlayed t hese redds
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FIGURE 18.
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TABLE 6. Physical, Chemical And Hydraulic Parameters Associated With Artificial Spring Chinook
Redds Exposed To Constant (Control) And Fluctuating Flows (Test) During Nonpeaking
And Peaking Hours. Hayden Creek Channels. Fall 1979.

Water Water
Water Water Velocity Velocity
Depth (cm) Depth {cm) (cms) (cms)

Redd No. Channel < 0.84mm (Peaking) (Nonpeaking) (Peaking) (Nonpeaking)

Dissolved oxygen

1174

ms/1

1179

1 Control C 0.44 9.14 12.19 6.10 10.67 5.2 5.7
Test T 0.59 6.10 — 13.72 -= 5.6 5.4

2 C 1.23 7.62 10.67 4.57 7.62 2.3 3.0
T 1.25 6.10 -- 0 - 5.9 6.0

3 C 0.19 6.10 7.62 0 3.05 1.7 1.0
T 0.76 6.10 - 0 - 5.7 5.9

4 C 2.79 9.14 12.19 3.05 10.67 2.5 1.4
T 1.65 9.14 -= 12.19 -= 5.3 5.9

5 C 2.52 7.62 9.14 3.05 3.05 3.3 2.1
T 2.23 7.62 -- 1.52 - 5.2 6.2

6 C 1.01 9.14 12.19 3.05 3.05 4.4 2.3
T 4.98 9.14 -- 0 - 5.2 4.4

7 C 1.93 6.10 9.14 7.62 15.24 5.6 5.8
T 4.25 6.10 -= 13.72 -= 5.2 5.8

8 C 4.97 6.10 6.10 9.14 15.24 5.9 6.6
T 3.73 6.10 -= 7.62 -= 5.2 5.9

9 C 5.78 6.10 7.62 0 0 4.8 4.8
T 4.10 9.14 -- 0 - 4.9 5.1

10 C 2.15 6.10 7.62 10.67 18.29 5.6 5.5
T 4.85 6.10 - 15.24 - 5.0 5.4

11 C 9.90 9.14 7.62 6.10 13.72 5.5 5.6
T 6.32 4.57 -= 18.29 -= 5.4 5.9

12 C 9.35 6.10 9.14 6.10 10.67 5.0 4.8
T 3.91 6.10 -- 7.62 - 5.8 6.3

1 cm = 0.3937 inch
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Table 7. Discharge and Resulting Average Velocities For The Control
And Test Channels As Determined Using Fluorescent Dye Time
Of Travel Techniques, Hayden Creek Research Station, Fall-
Winter 1979-80.
Flow 1/
Flow 1/m Average Velocity cm/sec.
Peaking Nonpeaking g Peaking Nonpeaking |
_Channel R o
Upper Control 1021.2 1269.6 10.90 14.99
Upper Test 1021.2 11.99
Lower Control 1021.2 1269.6 9.22 14.99
Lower Test 1021.2 -- 10.90
Flow 1/m Average Velocity cm/sec.
Peaking Nonpeaking Peaking Nonpeaking
Channel o I
Upper Control 171.8 873.6
Upper Test 171.8
Lower Control 171.8 873.6
Lower Test 171.8

Channel length = 1798 cm

which may have reduced intragravel velocities and oxygen replenishment.
Test channel riffles had no epilithic algae.

Mean water temperatures ranged from 11.4 C to 0.84 C. Water tempera-
tures averaged approximately 1.7 C during most of November. Maximum air
temperature was 26.9 C while minimum was -8.9 C. The minimum air tempera-
ture during the peaking schedule was -5.6 C which occurred when the riffles
were dewatered; intragravel temperature (riffle 4 - test) at this time was
5.6 C. The minimum temperature recorded for the intragravel environment

during periods of dewatering was 3.36 C. In general, dewatered intragravel
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temperatures remained 1-2 C higher than the water temperature, with the
maximum difference occurring just prior to flow restoration. We found no
evidence of intragravel freezing during periods of dewatering, as no water
filled vials were broken.

In all riffles, alevins were longer and heavier from flow fluctuation
channel (test). Both lengths and weights of alevins from the test channel
tended to increase with increased sediment while those from the control in-
creased through riffle 3 and then decreased as sediment level increased
(Figure 19). Mean lengths and weights of alevins from the control ranged
from 22.16 to 24.30 mm (.87 to .96 inch) and 288.0 to 371.0 mg, while those
from the test ranged from 24.02 to 27.07 mm (.95 to 1.07 inch) and 292.0 to
341.0 mg respectively (Table 8). Overall, test channel alevins were signifi-
cantly Tonger (P < 0037) and heavier (P < .0391) than alevins from the con-

There was no significant difference in alevin length (P > .1586 or
weight (P .6255) among the four riffles

After rearing for 53 days, there was no significant difference in fry
length between the control (X = 60.93 mm) and test (X = 59.93) channel (P >
0.10). Mean weights at the end of the rearing period were 1.68 gm for con-

alevins and 1.78 gm for test alevins, with growth rates of 0.023 and
0.024 gm/day respectively (Figure 20). Overall, there was no significant
difference in weight or growth rates between control and test fry during

the rearing test (weight- P > .7897; growth- P > .3950).

Fall Chinook Salmon:

Embryo survival in both channels was very low (X controls = 1.29%
X test = 4.13%) ranging from 0 to 4.0% in the control, and from 0 to 16.0%

in the test Table 9) (upper test channels cumulatively dewatered 43 days;
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FIGURE 20. Growth Comparisons (weight) of Spring Chinook Salmon Fry
Resulting From Embryos Incubated in Control Versus Test Flow
Conditions, Hayden Creek Research Station, Fall 1979.
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TABLE 9. Percent Fall Chinook Egg Survival From Artificial Redds Exposed
To Constant (Control) and Simulated Peaking Flows (Tests) In The
Hayden Creek Channels. Winter 1979.

Percent Egg Survival

Redd No. Channel Box 1 Box 2 Box 3 Box 4 Mean X
1 Control C 3.0 1.0 2.0 2.0 2.0
Test T 0 0 1.0 1.0 0.50
2 C 3.0 0 3.0 1.0 1.75
T 0 0 0 0 0
3 C 1.0 - 3.0 2.0 1.50
T 0 0 3.0 0 0.75
X C - - - - 1.75
T - - - - 0.42
4 C 1.0 1.0 1.0 0 0.75
T 2.0 1.0 6.0 2.0 2.75
5 C 2.0 1.0 0 0 0.75
T 0 1.0 4.0 0 1.25
6 C 1.0 1.0 2.0 0 1.00
T 0 0 2.0 0 0.50
X C -— - -— - 0.83
T - - -— -— 1.50
7 C 0 4.0 1.0 1.0 1.50
T 10.0 11.0 12.0 8.0 10.25
8 C 4.0 2.0 0 0 1.50
T 5.0 10.0 4.0 10.0 7.25
9 C 3.0 1.0 1.0 3.0 2.0
T 4.0 6.0 4.0 5.0 4.75
X C - - - - 1.67
T — — — — 7.42
10 C 2.0 2.0 0 0 1.0
T 16.0 7.0 8.0 2.0 8.25
11 C 1.0 1.0 2.0 3.0 1.75
T 6.0 6.0 5.0 7.0 6.0
12 C 0 0 0 0 0
T 4;0 7.0 12.0 6.0 7.25
X c — — — — 0.92
T — — — — 7.17
OVERALL X C - -— -— -— 1.29
T — — — — 4.13
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]ower channels 39.4 days A chi-square test of independence indicated no
significant difference in embryo survival between the two channels (P = 0.10).
We attribute the Tow survival to handling mortality and not to differences
in flow. Due to inclement weather fertilized eggs were not planted in the
Hayden Creek channels until 33 hours after they were spawned.

Water temperatures ranged from 2.8 to 7.3 C while air temperatures
ranged from -26.9 C to 8.96 C. As in the spring chinook tests, intragravel
temperatures during periods of dewatering were generally 1-2 C higher than
water temperatures and there was no evidence of intragravel freezing. How-
ever, exposed redds were covered with insulation which may have effectivelly
prevented freezing. Because of the small sample sizes, we made no fry quality

comparisons.

50



EMBRYO DEWATERING TOLERANCE TESTS

Spring - Fall 1979

Steelhead Tests With the exception of week 1, steelhead embryo
hatching survival from both watered and dewatered chambers was relatively
constant between sampling weeks (Figure 21) The low hatching success
from week 1 was due to handling mortality. Hatching success ranged from
54 to 100% for watered embryos and from 67 to 98% for dewatered (excluding
week 1) (Table 10). Overall survival to hatching was independent of in-
cubation in watered or dewatered conditions and the four sediment levels
(P > 0.10) and of watered versus dewatered and the number of weeks de-
watered (P 0.10)

Fertilized eggs from the dewatered chambers typically hatched earlier
than those from the watered. This was most evident in the chambers de-
watered 3 to 4 weeks, where hatching modes differed by as much as 14 days
Figure 22)

Mean water temperatures during the incubation period ranged from 3.3
C to 8.5 C (Figure 23). Intragravel temperatures in the dewatered chambers
were higher than water temperatures and ranged from 3.3 C to 14.4 C Tem-
peratures within the 10% < 0.84 mm mix averaged higher overall than the
others, although this was probably a result of the chamber being exposed
to the sun the longest. Maximum temperatures typically occurred between
1200 and 1600 hours while minimum temperatures between 0600 and 0900 hr.

Gravel moisture within the four sediment mixes remained relatively
constant throughout all 4 weeks of dewatering (Figure 24). The sediment
mix 30% < 4.6 > 0.84 and 20% < 0.84 mm maintained the highest moisture con-

tent, X = 3.92%. The other two mixes; 20% < 4.6 > 0.84 and 10% < 0.84 mm,
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FIGURE 21. Mean Percentage Embryo Survival at Sampling (S) and Final Percent
Hatch (H) For Steelhead (Upper) and Spring Chinook (Lower) De-
watering Tests. Steelhead Embryos Were Dewatered 1-4 Weeks,
Chinook Eggs 2-5 Weeks, Hayden Creek Research Station, 1979.
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Figure 22.

WATERED

-=—--- DEWATER
30% <4.6> 0.84 DEWATERED

20%<0.84
1 WEEK

20%<4.6>0.84
1 WEEK

20%<4.6>0.84
10%< 0.84

JUNE MAY JUNE

DATE
Hatching Chronology of Steelhead Eggs Incubated in Watered or
Dewatered Conditions Within Four Sediment Mixtures for 1-4 Weeks
Prior to Placement in Heath Stack Incubators, Hayden Creek
Research Station, Spring 1979,
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and 10% < 0.84 mm averaged 4.48 and 4.23% respectively Gravel moisture
may have been influenced by two days of snow showers and 6 days of rain
during the tests.

In general, mean alevin lengths were Tonger from watered versus de-
watered chambers while the total weights were approximately equal Table 12).
Differences in length reflect variations in sampling times rather than in-
cubation conditions of watered and dewatered. No statistical comparisons
of alevin quality parameters were made, however, it is evident, that there
was little difference in length or weight between alevins from eggs subjected
to from 1-4 weeks of dewatering.

Results from rearing tests showed no significant differences in mean
length or mean weight between fry from embryos incubated in watered versus
dewatered conditions (P > .0778 length; P > .2976 weight). Mean total
Tength ranged from 51.73 to 58.59 mm (watered), and from 49.46 to 58.24 mm
(dewatered) (Table 13). Mean weight ranged from 0.993 to 1.145 gm (watered)
and 1.006 to 1.116 gm (dewatered). No significant difference was found in
length or final weight between fry with respect to sediment level, watered
or dewatered incubation, and duration (2-4 weeks) P > .0778 length - P > .3669
weight). Average growth rates of watered and dewatered fry closely paral-
Teled one another in both Hayden Creek and spring water, although rates
were significantly higher in the latter (P < .0001) (Figure 25 and 26). Fry
growth rates in Hayden Creek water ranged from 0.014 to 0.020 gm/day (watered)
and 0.014 to 0.019 gm/day (dewatered) in spring water from 0.019 to 0.029
gm/day (watered) and 0.018 to 0.026 gm/day (dewatered) (Table 14) There
was no significant difference in fry growth rates between those from watered

versus dewatered chambers, when the Hayden Creek and spring water tests were

combined (P > .7395).
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Result
Sampling Dates Do Not Necessarily Correspond To Hatching Dates.

ms

Mean Length, Total Weight, Yolk Weight And Body Weight Of Steelhead Alev

Egg Incubations Of From 1-4 Weeks Duration.

Hayden Creek Research Station.
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Spring Chinook Test

Spring Chinook embryo survival to hatch ranged from 0 to 81.5%

(X = 56.2%) in watered chambers and 67.5 to 85.5% (X = 75.8%) in dewatered
chambers (Table 15, Figure 21) Survivals were much higher in dewatered
than watered chambers containing the sediment mix 20% < 4.6 > 0.84 and

10% < 0.84 mm. Surviva was thus dependent on whether incubated in watered
or dewatered conditions and sediment mix (P < 0.025). It is possible that
extraneous sediment was transported via Hayden Creek during the steelhead
tests when natural water runoff was occurring and was deposited within the
watered chambers, thereby reducing intragravel flows. Overal hatching
survival was independent of watered versus dewatered conditions and the
number of weeks (P > 0.10).

During dewatering tests average water temperatures ranged from 6.0 C
to 11.4 C, while air temperatures ranged from 5.0 C to 22.0 (Figure 27).
Temperatures within the gravel of the dewatered chambers were generally
higher than water temperatures, and ranged from 4.5 C to 12.8 C. Sheltered
chambers had higher average intragravel temperatures than unsheltered cham-
bers while in both cases temperatures were lower in the sediment mix con-
taining 20% < 4.6 > 0.84 and 10% < 0.84 mm.

As in the steelhead tests, gravel moisture remained relatively constant
throughout the 5 week dewatering period, even in the sheltered chambers,
which prevented addition of moisture from weather events (Figure 24). The
highest average moisture content (X = 7.77%) was found in the sediment mix
20% < 4.6 > 0.84 and 10% < 0.84 mm in the sheltered chambers, while the
Towest (X = 5.07%) was also found in the sheltered chambers within the sedi-

ment mix 20% < 4.6 > 0.84 mm. Moisture levels within the unsheltered
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counterparts of the mixes averaged 6.40 and 5.37% respectively. Rain
occurred on only 1 day during the incubation period, which may explain
the equality in moisture levels between sheltered and unsheltered cham-
bers.

Alevins resulting from fertilized eggs incubated in dewatered cham-
bers were significantly longer (P < .0439) than those from watered, al-
though weights were not significantly heavier (P > .3203). Mean total
lengths ranged from 22.0 to 24.6 (.86 to .96 inch) (watered) and from

to 26.17 mm (.94 to 1.02 inch) (dewatered) (Table 16). Mean weights
ranged from 295.0 to 327 mg (watered) and 290 to 331 mg (dewatered). The
above differences are probably due to variation in intragravel tempera-
tures. There was no significant difference in length or weight of alevins
incubated in sheltered versus unsheltered chambers (P > .7386 length;
P > 1374 weight), within the two sediment types (P > .2324 length;
P > 0855 weight), or between the different incubation periods, 2-5 weeks
5314 length; P > .0682 weight).

Fry produced in watered and dewatered test conditions and reared for
57 days exhibited no significant differences in length (P > .9125), or
weight (P > .9393). Average total length ranged from 49.60 to 57.55 mm
(1.93 to 2.24 inch) (watered), and 51.73 to 56.18 mm (2.02 to 2.19 inch)
(dewatered); mean weights from 1.25 to 1.85 gm (watered), and 1.36 to

gm (dewatered) (Table 17). Growth rates during the 57 day rearing
period ranged from .015 to .025 gm/day for watered, and from .017 to .24
gm/day, (dewatered) (Table 18). Mean growth rates of watered and dewatered
fry closely coincided, and overall there was not significant difference

(P > .9128) between them (Figure 28). Likewise, watered and dewatered
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growh rates were not significantly different among the 2-5 week test dura-

tions (P > .8083).
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DISCUSSION

Streamflow Fluctuations

Enbryo Surviva

No definitive relationship was found betwen embryo survival and the
incidence of flow fluctuations and periodic redd exposure in either the
field or laboratory tests. However, in the field tests, the highest
embryo survival did occur in the area where redds were cumulatively de-
watered the least, and there were significant inverse relationships be-
tween both cumulative and maximum duration of dewatering and embryo sur-
vival. These correlations, however, were somewhat tenuous (r = -.2503)
with embryo survivals in some cases extremely low (less than 25%) even
in redds which were never dewatered. Spring chinook embryo survival from
the laboratory tests averaged 74% in the control (constant flow) and 69.6%
in the test (flows fluctuated).

Meekin (1967) in a study below Chief Joseph Dam on the Columbia River

reported enbryo survival sof92% from unexposed natural chinook redds and

88% from redds periodically dewatered. His conclusion was that damage to
buried embryos was neglible. In contrast, Thompson (1974) reported signif-
icant mortality of eyed steelhead embryos subjected to "brief" periods of
dewatering associated with flow fluctuations below Hells Canyon Dam.

Thompson provided no specific survival information and conceded that

mortality data was substantially inconclusive.

Handling Mortality

Handling was one source of mortality which contributed to reduced

embryo survival in field tests. Fertilized eggs used in tests were trans-

ported in water from the Bonneville Hatchery and planting was not complete



until 27 hours after the egg take.

Leitritz (1963) reported that fertilized green eggs can be shipped
for a period of up to 48 hours after spawning, provided severe jolting
and temperature elevation can be prevented. Although temperature was no
problem in our study, embryos were subjected to sporadic agitation during
transportation. Although we were not able to specifically evaluate hand-
ling mortality in field tests, visual mortality estimates ranged from 0 to
25%. In a similar study investigating peaking impacts on fall chinook in-
cubation below Priest Rapids Dam on the Columbia Rivers fertilized green
egg mortality was as high as 90 to 95% at the time of planting, just 5 hours
after the embryos were spawned (Don Chapman and Tom Welch, personal communi-
cation). \Welch felt that eggs from the Priest Rapids stock of fall chinook
were extremely sensitive to handling. In our study, approximately 2000
extra embryos remained in the coolers until the day following the planting
operation. We estimated 10 to 15% mortality after 50 hours plus since
spawning. Thus, it appears that embryo mortality found in Hells Canyon

was not totally a result of handling.

Sediment

The amount of fine sediment within artificial redds in Hells Canyon
could also have affected embryo survival regardless or whether embryos were
watered or dewatered. Many studies have cited the deleterious effects of
sediment on embryo incubation and fry emergence. If the study sites are re-
presentative of those selected by fall chinook in the Snake River, and there
is evidence they are, embryo survival and emergence from natural redds may

be low. Overall, survival to hatch in the control redds which were never

dewatered, averaged 33.9% although survival to emergence would have been
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poor. Within these artificial redds the entire gravel filled W-V box was
saturated with fine sediment. According to Beschta and Jackson (1978),
sediment deposition and intrusion into the substrate involves transport

and deposition of fines into the surface voids, and the settling of parti-
cles into deeper gravel voids. The depth to which the material settles is
dependent on flow characteristics with higher velocities and greater bed
shear allowing deeper settling of material. Beschta and Jackson reported
that the flushing of fines can only occur during periods of high flow when
the channel bed is disturbed causing bedload transport. In Hells Canyon,
the rapid fluctuation in flows appear to be resulting in bedload transport
during periods of high flow, followed by sediment deposition and intrusion
during periods of low flow. With this type of regime, the relatively clean
gravels resulting from redd building activity of the female salmon, will be
rapidly filled with fine materials. In contrast, the historical hydrograph
associated with the Snake River followed a general pattern of decreasing
flows during the fall and winter months. Thus, there would be little trans-
port of sediment into spawning area gravel during fall chinook embryo in-

cubation and fry emergence.

Rate of Dewatering

Sediment levels influenced test embryo survival in laboratory channel
tests 1 However, survival may have been more related to how quickly the
redds become dewatered rather than the specific level of sediment, although
sediment levels are determinants of dewatering rates.

Rate of water movement through soils is determined by permeability
which in turn depends on the sizes quantity and texture of materials com-

prising the substrate. Substrates composed of large quantities of fine
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sediment have lower permeabilities than those with less amount or larger
sediment and therefore, would take a longer time to become dewatered.
Embryo survival in Hells Canyon may also have been influenced by
rates of dewatering. Embryos within gravels containing high levels of
sediment may, upon Flow cessation be subjected to essentially stagnant
water until downward percolation occurs and the eggs become completely
dewatered. Because intragravel water velocity is important in transport-
ing oxygen to and metabolic waste material from incubating eggs, its re-
duction or cessation may be deleterious to embryo survival. O"brien et al.
(1978) reported that natural convection processes may act as an emergency
oxygen transport mechanism for embryos during periods of low velocities.
However, if oxygen is not replenished to the surrounding water, the con-
vective cycles would eventually deplete the oxygen content below that nec-
essary for survival. Gradual reductions in flow over redds may result in
concomitant reductions in intragravel velocity which may eventually reach
critical levels. Maintaining a few centimeters of non-moving water over
redds to keep embryos moist may be more baneful than complete dewatering.
IT embryos are subjected to periodic dewaterings, it may be less detrimental
if they attain the exposed state as quickly as possible thereby avoiding

long periods of containment within non-moving water.

Freezing

Although intragravel temperatures in the Snake River during periods
of redd dewatering were reduced on several occassions below 0 C, we found
no evidence (i.e. water filled vials were unbroken) suggesting the embryos
were subjected to freezing conditions. However, the water. filled vials

may simply not have had sufficient time to freeze between flow fluctuations.
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Incidence of intragravel freezing is largely controlled by ambient
air temperatures which may markedly differ from year to year. Certainly
exposure of redds during periods of extreme cold predisposes them to freezing
conditions.  McNeil (1966) reported embryo and fry mortalities of up to 65%
resulting from intragravel freezing. He concluded that the highest mortal-
ities were generally associated with streams having the lowest discharge.
With respect to embryos which are periodically dewatered, freezing should

be considered the primary mortality factor.

Thermal Shock

Although not an apparent problem in field or laboratory peaking tests,
thermal shock, due to sudden increases or decreases in temperature, could
occur to embryos in the dewatered state when flow is restored. Bell (1973)
stated that especially during the '"tender" (pre-eyed) period of incubation,
excessive mortality may result from a sudden raising or lowering of tempera-
tures. To circumvent this problem in hatcheries, embryos are tempered to

within 2.8 C of the water temperature into which they are being transferred.

Other Imposed Conditions

Other flow fluctuation related conditions which may reduce survival
include air entrapment and gravel settling.

Air entrapment may occur when gravel becomes dewatered below sheltered
voids which then trap air upon flow restoration. Johnson (1980) found a
dramatic reduction in permeability of gravel containing entrapped air.

This could impair oxygen transfer rates of incubating embryos resulting in
high mortalities. Although the trapped air will eventually reenter solution,

if the dewaterings are frequent, it could become a chronic condition.
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Gravel settling occurs when the substrate becomes dewatered thereby
coming under the full influence of gravitational forces. Dewatered embryos
may be subjected to movement and external pressure resulting from the set-
tling of the overlying substrate (Fred Watts, personal communication, Civil
Engineering Deparmtent, University of ldaho). Potentially this could be
deleterious to embryos, particularly during the tender stage of development.
During this period, extending from approximately 48 hours after spawning to
when the embryos develop visible eye spots, the embryos are extremely sensi-
tive to movement, which may result in rupture of the yolk membrane and death.

Both of the above conditions warrant further investigatiion.

Fry Survival

Although incubating embryos appear to be largely unaffected by periods
of dewatering, newlyhatched alevins are far less tolerant, as evidenced by
previous tests (Reiser and White, 1980 in press) in which chinook embryos
were incubated in moist cotton cloth until hatching commenced. Embryos
were monitored every 24 hours and newly hatched alevins removed to vertical
flow incubators. As many as 38% of the hatched alevins within a 24 hour
period died before being transferred. Because hatching occurred through-
out the 24 hours, the dead alevins resulted from embryos which hatched first
and were therefore exposed to dewatered conditions the longest. Assuming
an even hatch throughout any 24 hour period we estimated alevin dewatering
tolerance to be less than 10 hours. Further studies are needed to specifi-

cally evaluate the effects of flow fluctuation on alevin and fry survival.
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EMBRYO DEWATERING TOLERANCE

Streamflow reductions and/or cessation may completely dewater salmonid
redds. Results of our laboratory tests indicate that dewatered fertilized
eggs are extremely tolerant to long periods of dewatering (provided they
are kept moist) with no significant effects on survival to hatching, growth
rates, or fry quality. Hobbs(1937), in a study of the Selwyn River in New
Zealand, Jocated several brown trout redds which had been dewatered for ap-
proximately 5 weeks. Survival assessment within a typical redd indicated
83% of the ova were alive. Similar findings of healthy brown trout ova
within exposed redds of the Selwyn River were reported by Hardy (1962).
Hawke (1978) found viable chinook embryos within stranded redds in the
Mathias River, South Island, New Zealand. He estimated that water had not
flowed over the redds for approximately 3 weeks. In our tests we found
that salmonid embryos were capable of successfully completing their entire
embryogenesis (including hatching) in a dewatered state, provided the sur-

rounding gravel remained moist.

Moisture Content in Dewatered Redds-

Moisture retention is to a large degree dependent upon the amount and
texture of sediment present in the redd, with finer textured materials
able to retain a greater percentage of moisture. Thus, moisture content
was highest in the sediment mix 30% <4.6 > 0.84 and 10% < 0.84 mm, However,
moisture retention alone can not explain the relatively constant amounts of
moisture following 5 week dewatering tests. Discounting precipitation as a
source of moisture replenishment, two mechanisms acting within the gravel
may sustain high moisture levels. The first, capillarity, entails the up-

ward movement of water from the water table through the interstices of the



sediment (Buckman and Brady, 1972). This process is impeded by trapped

air and large pores and for this reason probably operated only in gravel
mixes containing an abundance of fines. The second mechanism, water vapor
transfer, is more likely responsible for the maintenance of moisture in
coarse textured gravels as would be found in salmonid redds (Glenn Lewis
Personal Communication, Soils Department, University of ldaho). This
process results from the presence of a vapor-pressure gradient between

two adjoining areas. If one area has a high moisture content (e.g. close
proximity to groundwater flow) and high vapor pressure, and an adjacent

area is relatively dry with a low vapor pressure, a diffusion of moisture
into the dry area will tend to occur. This process may be enhanced if

the temperature of the dry substrate mass is lowered resulting in a decrease
in vapor pressure and diffusion of water vapor into the area. Such reductions
in temperature within dewatered redds would probably occur near the surface,”
where the influence of external nighttime ambient temperatures would be maxi-
mized. For this reason, vapor transfer probably operates most efficiently
during the evening. During the daytime, the upper layers of gravel will
become warmer than the deeper, moist layers resulting in minimum vapor
transfer. Provided a layer of groundwater remains in close proximity to
dewatered eggs, the mechanisms of vapor transfer and to a lesser degree
capillarity, should replenish moisture loss from the surrounding gravel-
sediment mix, even during extended periods of dewatering.  Specific distance
limits from embryos to groundwater levels within which these mechanisms

will continue to operate are unknown and warrant further investi-

gation. In our laboratory tests water levels were approximately 10 cm be-

low dewatered embryos.
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Our tests suggest that gravel moisture levels of approximately 4% or
more are sufficient to allow salmonid embryos to withstand relatively long

periods of redd dewatering, provided temperatures remain within incubation

tolerances.

Sediment

In addition to retarding moisture loss from the surrounding embryos,
sediment also provides an insulating layer to buffer temperature fluctuations
associated with the external environment. This is especially important
during periods of extreme cold. In addition, the percentage level of sedi-
ment is important as it must allow atmospheric oxygen infiltration to the
eggs Oxygen is supplied to eggs in dewatered redds via the continuous
diffusion of atmospheric air into the intragravel spaces, the dissolving of
oxygen into the thin layer of water surrounding the embryo and the diffusion

of oxygen through the egg capsule to the developing embryo.

Embryo Development

The most obvious effect of long term periods of dewatering on steel-
head and spring chinook embryos was accelerated development with hatching
dates in some cases 14 days earlier than those incubated in water. Regard-
less of being incubated in watered or dewatered conditions or the duration
of such incubations, fry which had been reared for 57-60 days exhibited
no significant difference in length or weight. In situations where intra-
gravel temperatures may be less than water temperatures, we would expect

delayed development and hatching times.
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SUMMARY

1) In Hells Canyon no definitive relationship was found between
embryo survival and the incidence of flow fluctuations and periodic redd
exposure. However, the highest survivals occurred in areas dewatered the

least.

2) In laboratory tests, no significant differences in survival were
found between embryos periodically dewatered (11-12 hours/day) and those

continuously watered.

3) Rate of dewatering may influence embryo survival. If embryos must
be subjected to periodic dewaterings, it may be less injurious if they attain
the exposed state as quickly as possible thereby avoiding long periods of

containment with non-moving water.

4) There was extensive sediment intrusion into the artificial fall
chinook redds within Hells Canyon. Such accumulations may be caused by
the rapid fluctuations in flows resulting in alternate cycles of bedload

transport, sediment deposition and sediment intrusion.

5) No evidence of intragravel freezing was found during periods of
dewatering in either the field or laboratory study. However, water filled

vials may not have had sufficient time to freeze between flow fluctuations.

6) Dewatered redd intragravel temperatures in Hells Canyon were gen-
erally colder than ambient water temperature. Thus, embryo development

may be delayed in redds periodically dewatered.



7) Dewatered intragravel temperatures in laboratory tests were gen-
erally higher than water temperatures and resulted in significantly larger
and heavier alevins. Such differences were transitory with no fry quality

differences upon completion of rearing tests.

8) Thermal 1shock, air entrapment and gravel settling may occur as

a result of flow fluctuation and could adversely affect egg survival.

9) Steelhead trout and chinook salmon eggs were tolerant to I-5
weeks of dewatering with no significant effects on survival to hatching
(provided embryos remained moist), alevin quality, growth rates or latent

fry quality.

10) Alevin dewatering tolerance limits are estimated to be less

than 10 hours.

11) Gravel moisture within dewatered redds remained relatively con-
stant throughout the 1-4 (steelhead) and 1-5 (chinook) week dewatering
period. Water vapor transfer is the probable mechanism responsible for

replenishing lost moisture within dewatered redds.

12) The most pronounced effect of long term dewatering on steelhead
and spring chinook embryos was accelerated development with hatching modes

as many as 14 days earlier than those incubated in water.

13) Regardless of incubation condition tested (watered or dewatered)
or duration, fry reared 57-60 days exhibited no significant differences in

length or weight.
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